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We propose a flexible method to approximate the subjective cumulative distribution function of an eco-
nomic agent about the future realization of a continuous random variable. The method can closely ap-
proximate a wide variety of distributions while maintaining weak assumptions on the shape of distribution
functions. We show how moments and quantiles of general functions of the random variable can be com-
puted analytically and/or numerically. We illustrate the method by revisiting the determinants of income
expectations in the United States. A Monte Carlo analysis suggests that a quantile-based flexible approach
can be used to successfully deal with censoring and possible rounding levels present in the data. Finally,
our analysis suggests that the performance of our flexible approach matches that of a correctly specified
parametric approach and is clearly better than that of a misspecified parametric approach.

KEY WORDS: Approximation of subjective probability distribution; Elicitation of probabilities; Spline
interpolation.

1. INTRODUCTION

The measurement of subjective expectations has proven use-
ful for eliciting knowledge of economic agents and experts
on the future realization of various economic variables (e.g.,
Dominitz and Manski 1997; Engelberg, Manski, and Williams
2009) and improving the empirical content of stochastic models
of choice under uncertainty (Bellemare, Kröger, and van Soest
2008; Delavande 2008). It has been advocated that the measure-
ment of expectations should proceed by first measuring sub-
jective probability distributions. In particular, there is growing
evidence that agents reveal different points of their subjective
distribution (mean, median, or other quantiles) when asked for
their best point prediction of a future event (see Manski 2004
for a review). Thus, deriving expectations from probability dis-
tributions can improve interpersonal comparisons while provid-
ing more information on the uncertainty faced by respondents.

Up to now, two approaches have been used to make infer-
ences on subjective distributions. The first approach is para-
metric and assumes that the subjective distribution of a respon-
dent is drawn from a parametric distribution (e.g., a normal or
lognormal distribution) that depends on a finite number of un-
known parameters. As with most parametric approaches, mis-
specification of the underlying distribution may lead to biased
forecasts and inferences. The second approach is fully nonpara-
metric, placing no restriction of the nature or shape of subjec-
tive distributions. This approach overcomes potentials biases
due to misspecification of the underlying distribution at the ex-
pense of providing set rather than point identification of the
functionals of interest.

In this paper, we present a flexible method that yields point
identification of the distribution function of a respondent while
maintaining weak assumptions on the shape of the underlying
distribution. The flexible approach builds on cubic spline in-
terpolation, which requires only that the underlying distribu-
tions be twice differentiable on their support. Moreover, the es-
timation by cubic splines involves solving a system of linear
equations. Thus our flexible approach provides a simple an-
alytical solution for the estimated function. Cubic splines are
well-known interpolation methods (see, e.g., Judd 1998); how-
ever, to the best of our knowledge, they have not been applied
to fit individual specific cumulative distribution functions using
subjective expectations data. The closest work using interpola-
tion methods to fit a cumulative distribution function is that of
Kriström (1990), who estimated the population-level distribu-
tion of willingness to pay for an environmental good using lin-
ear interpolation and aggregated survey responses to valuation
questions.

We illustrate our approach by revisiting the determinants of
expectations concerning future income using data from the Sur-
vey of Economic Expectations (SEE). These data are character-
ized by high levels of censoring and potential rounding. Censor-
ing occurs when individuals report a nonzero probability that
the future outcome will fall outside the range of potential val-
ues spanned by the probability questions. The parametric ap-
proach maintains sufficiently strong distributional assumptions
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to deal with censoring. In contrast, the flexible approach main-
tains weaker distributional assumptions. As a result, estimated
moments will be affected by censoring. To overcome this prob-
lem, we propose a quantile-based flexible approach that uses
the estimated median as a measure of central tendency and the
estimated interquartile range (IQR) as a measure of respon-
dent uncertainty. We compare estimators of the determinants
of expectations and uncertainty using both a specific paramet-
ric approach and our quantile-based flexible approach. We find
that both approaches provide similar results for most determi-
nants of future income, suggesting that the distributional as-
sumptions chosen to implement the parametric approach are
reasonable.

In the final part of the article, we present a Monte Carlo anal-
ysis designed to measure the impact of censoring and rounding
on estimates of the determinants of expectations. We focus on
comparing the performance of our flexible approach with that
of a correctly specified parametric approach as well as an in-
correctly specified parametric approach. We find that the flexi-
ble approach generates unbiased estimates of the determinants
of expectations. This result holds when we introduce censoring
and rounding levels believed to be present in the data. More-
over, the performance of the flexible approach is comparable to
that of the correctly specified parametric approach but clearly
outperforms the incorrectly specified parametric approach that
we consider.

2. A FLEXIBLE APPROACH

Our objective is to approximate the subjective probability
distribution Fi(z) = Pri(Z ≤ z) of a respondent i using his or her
answers to J probability questions of the type “what is the per-
cent chance that Z is less than or equal to zj?,” where z1 < z2 <

· · · < zJ are threshold values. Thus the J data points available
to make inferences on Fi(z) are {(z1,Fi(z1)), . . . , (zJ,Fi(zJ))},
where 0 ≤ Fi(zj) ≤ 1 denotes the probability statement to a
question with threshold zj. Censoring occurs when Fi(z1) > 0
and/or 1 − Fi(zJ) > 0. This implies that some probability mass
is not contained within the interval [z1, zJ].

We propose to use the available data to approximate the sub-
jective cumulative distribution function Fi(z) using cubic spline
interpolation. A cubic spline is a piecewise polynomial func-
tion defined on J − 1 intervals, [z1, z2], . . . , [zJ−1, zJ]. On each
interval, the function Fi(z) is assumed to be given by a polyno-
mial aj + bjz + cjz2 + djz3, where (aj,bj, cj,dj) are the interval-
specific polynomial coefficients. The spline approximation of
the function Fi(z) is constructed by simply connecting the dif-
ferent polynomials at the relevant threshold values. The set
{(aj,bj, cj,dj) : j = 1, . . . , J − 1} contains the 4(J − 1) unknown
polynomial coefficients to be estimated. Exploiting continuity
at the endpoints and interior thresholds provides 2J − 2 equa-
tions

Fi(zj) = aj + bjzj + cjz
2
j + djz

3
j for j = 2, . . . , J − 1,

Fi(zj) = aj+1 + bj+1zj + cj+1z2
j

+ dj+1z3
j for j = 2, . . . , J − 1,

Fi(z1) = a1 + b1z1 + c1z2
1 + d1z3

1,

Fi(zJ) = aJ−1 + bJ−1zJ + cJ−1z2
J + dJ−1z3

J .

Next, restrictions that the first and second derivatives of Fi(·)
agree at the interior thresholds generate 2J − 4 additional equa-
tions

bj + 2cjzj + 3djz
2
j = bj+1 + 2cj+1zj

+ 3dj+1z2
j for j = 2, . . . , J − 1,

2cj + 6djzj = 2cj+1 + 6dj+1zj for j = 2, . . . , J − 1.

Two more conditions, so-called “boundary conditions” at the
endpoints, are needed to estimate the 4(J − 1) polynomial co-
efficients of the cubic spline. There is very little guidance in the
literature to chose these boundary conditions. Here we chose
to impose that F′′

i (z1) = F′′
i (zJ) = 0, yielding what is known in

the literature as a natural cubic spline (see Judd 1998). Thus
restrictions on the derivatives and the boundary conditions gen-
erate a system of 4(J − 1) linear equations that can be solved
for the 4(J − 1) unknown parameters. We experimented with
boundary conditions restricting the first derivative at both end-
points F′

i(z1) = F′
i(zJ) = 0 or by mixing restrictions on first

and second derivatives [e.g., setting F′′
i (z1) = F′

i(zJ) = 0 or
F′

i(z1) = F′′
i (zJ) = 0]. We found that these changes had only

minor effects on the estimated splines. We also experimented
with linear and quadratic splines and found the cubic spline ap-
proximation to be superior. We did not find that increasing the
order of the spline further increased the quality of the approxi-
mation. Thus, we use natural cubic splines throughout the rest
of the article.

Absent censoring, moments can be directly estimated from
the fitted subjective cumulative distribution function. In partic-
ular, the λth noncentral moment of Z can be computed analyti-
cally using

Êi(Z
λ) =

J−1∑
j=1

[
b̂jzλ+1

λ + 1
+ 2̂cjzλ+2

λ + 2
+ 3̂djzλ+3

λ + 3

∣∣∣∣zj+1

zj

]
. (1)

Approximating Ei(h(Z)) = ∫
h(z)dFi(z) of a general function

h(·) is slightly more complicated. In such cases, numerical in-
tegration can be performed by quadrature or simulation using
F̂i(z). Similarly, quantiles can be obtained numerically by in-
verting F̂i(z). Quantiles are especially useful in the presence
of censoring, which occurs when survey respondents report a
nonzero probability that Z will fall below z1 and/or above zJ .
In such cases, relevant medians can be used as a measure of
central tendency, and the interquartile range (IQR) can be com-
puted as a measure of subjective uncertainty as long as Fi(z1)

and 1 − Fi(zJ) are less than or equal to 0.25.
We illustrate the flexible approach by fitting three different

distributions: a symmetric standard normal, an asymmetric chi-
squared distribution with 3 degrees of freedom, and a bimodal
distribution (with modes at π/2 and 5π/2). The density of the
bimodal distribution is given by sin(z)+1

A over the [0,3π ] inter-
val, where A = 2 + 3π ensures that the function integrates to 1
over its domain. We fitted each cumulative distribution func-
tion using between four and six data points equally spaced be-
tween 3 and −3 for the normal distribution, between 0 and 8
for the chi-squared distribution, and between 0 and 3π for the
bimodal distribution. The results are reported in Figure 1. As
expected, the goodness of fit increases with the number of data
points for all three interpolations. A slight approximation error
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Figure 1. Fitted normal, chi-squared, and sinus distributions using
cubic spline interpolations with four to six data points (questions). The
solid lines represent the true distributions. The dashed lines represent
the fitted distributions using the data points (dark points).

remains in the lower hand of the distribution when the number
of data points is increased from four to six. Finally, we find that
the approach has more difficulty fitting the bimodal distribution
than the other two distributions. In contrast, the interpolation
manages to provide a very good fit of the distribution with five
or more data points.

Monotonicity

Cubic spline interpolation can produce oscillations that can
cause the estimated distribution function to be nonmonotoni-
cally increasing. This is particularly problematic when estimat-
ing quantiles by inverting F̂i(·) to obtain a unique solution. Per-
haps the simplest and most effective way to correct for these
oscillations is to use the Hyman filter (Hyman 1983). This filter
works in two steps. In a first step, define f̂ ′

i (zj) as the estimated
value of the first derivative of the spline function at the thresh-
old zj. Next, define Si−1/2 = (F̂i(zj) − F̂i(zj−1))/(zj − zj−1) and
Si+1/2 = (F̂i(zj+1) − F̂i(zj))/(zj+1 − zj) as the left-side slope
connecting with the previous threshold, (F̂i(zj−1), zj−1), and the
right-side slope connecting with the threshold (F̂i(zj+1), zj+1).
de Boor and Swartz (1977) have shown that if an estimated
function satisfies the criteria

0 ≤ f̂ ′
i (zj) ≤ 3 min

(
Si−1/2,Si+1/2

)
, (2)

then it is monotone on the interval [zj, zj+1]. Thus the criteria (2)
can be used to identify all points where the monotonicity con-
dition is violated. In a second step, the condition of the equality
of the second derivatives at each of the thresholds where mono-
tonicity is violated is replaced by

f̂ ′
i (zj) = min

[
max(0, f̂ ′

i (zj)),3 min
(
Si−1/2,Si+1/2

)]
.

Hyman (1983) compared his filter approach to correct for
nonmonotonicity with various alternative spline methods (e.g.,
Akima splines) and found that cubic spline interpolation cou-
pled with his filter is the most effective method (in a mean
squared error sense) to impose monotonicity on an estimated
function.

3. REVISITING EXPECTATIONS
OF FUTURE INCOME

In this section we illustrate the flexible approach by revisit-
ing data on income expectations that were previously analyzed
in a parametric setting by Dominitz (2001). Data are taken from
the 1994–1995 SEE administered through WISCON, a national
telephone survey conducted by the University of Wisconsin
Survey Center. We focus on the following survey question:

What do you think is the percent chance (or chances out of 100) that your own
total income, before taxes, will be under $zj (in the next 12 months)?

For each respondent, four initial thresholds zj were selected
based on self-reported minimal and maximal values for their
income support. Respondents could then be asked one or two
additional questions based on their four answers. A detailed de-
scription of the branching algorithm to determine the income
level or additional questions was presented by Dominitz (2001).
We observe between four and six data points for each of 1249
respondents in the SEE aged 25–59 who were active in the la-
bor force at the time they answered the SEE and who provided
all of the information for our analysis.

Figure 2 documents the extent of censoring in these data by
plotting the sample distributions of Fi(z1,i) and Fi(zJ,i). We find
that only 44% of respondents have uncensored distributions at
the lower end [Fi(z1,i) = 0 in the left panel], whereas 66% of
respondents have uncensored distributions at the upper hand
[Fi(zJ,i) = 1 in the right panel]. Only 37% of all sample respon-
dents have uncensored distributions at both ends, a proportion
too low to perform meaningful inferences using predicted mo-
ments. We deal with censoring by using the median as the mea-
sure of central tendency and the IQR as the measure of disper-
sion. Note that a small subsample of respondents have Fi(z1,i)

or 1 − Fi(zJ,i) exceeding 0.25 and (to a lesser extent) exceeding
0.5; thus the estimated medians and/or IQR of respondents in
this subsample are potentially biased. We report a Monte Carlo
analysis to assess how such biases affect the measurement of
the determinants of expectations.

We compared estimates using our proposed quantile-based
flexible approach with those of a parametric approach applied to
the same data. The parametric approach involves fitting the best
lognormal distribution when sufficient data points are available.
Respondents who state at most one value of Fi(zj,i) that differs
from 0 or 1 are fitted with the best log-triangular distribution,
following the procedure of Engelberg, Manski, and Williams
(2009).

We applied the Hyman filter for 850 respondents (68%)
to correct for nonmonotonicity of the cumulative distribution
function predicted by the flexible approach. Figure 3 presents a
scatterplot of the predicted medians (left panel) and IQR (right
panel) using both approaches (the flexible on the horizontal axis
and the parametric on the vertical axis). We found similar pre-
dicted medians for both approaches, with predictions scattering
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Figure 2. Distribution of Fi(z1,i) (left) and Fi(zJ,i) (right) in the SEE data (N = 1249). Dashed lines are at 0.25 (left) and 0.75 (right).

closely and relatively equally below and above the 45-degree
line. More important differences emerge when looking at the
predicted IQR. There the flexible method tends to predict higher
dispersions (74.5% of predicted IQR are below the 45-degree
line).

We next estimated linear models for both approaches using
the predicted medians and IQR as dependent variables and us-
ing a set of independent variables including realized income
in the last year, basic demographic characteristics, employment
status, and education level (using no high school diploma as
the reference class). The first column of Table 1 presents some
sample descriptive statistics of these variables. We estimated
our models using the ordinary least squares (OLS) estimator
with robust standard errors. Results are presented in subsequent
columns of Table 1.

Overall, inferences using the flexible and parametric ap-
proaches are similar, suggesting that the assumption of ex-
pected income following a lognormal distribution is reasonable.
Only small differences emerge. For instance, the flexible ap-
proach predicts that women and Hispanics expect significantly
lower average median future income. Both methods yield dif-
ferent results concerning the effect of unemployment on the un-
certainty of future income and the income uncertainty faced by
African-Americans. Results of the parametric approach suggest
that the currently unemployed face significantly lower income
uncertainty, whereas results of the flexible approach indicate
that the previously unemployed have significantly higher in-
come uncertainty. The parametric approach finds that African-
American respondents have significantly greater income uncer-
tainty, whereas this effect is smaller and insignificant using the
flexible approach.

Figure 3. Scatterplot of estimated medians (left) and IQRs (right) of subjective income expectations, with either the parametric (vertical axis)
or flexible (horizontal axis) method (N = 1249). The dashed line represents the 45-degree line.
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Table 1. Determinants of subjective medians and IQR in the SEE using the parametric and flexible approaches

Desc. stat. Median IQR 25–75

Mean (SD) Param. Flexible Param. Flexible

Income 36.592 0.841∗∗∗ 0.828∗∗∗ 0.225∗∗∗ 0.295∗∗∗
(32.999) (0.063) (0.052) (0.039) (0.040)

Self-employed 0.123 4.201∗∗ 3.206∗ 12.910∗∗∗ 9.579∗∗∗
(0.329) (2.019) (1.887) (2.446) (1.364)

Currently unemployed 0.059 0.272 −0.336 −4.031∗∗∗ −1.291
(0.236) (1.897) (1.431) (1.271) (1.140)

Previously unemployed 0.117 −3.956∗∗∗ −3.532∗∗∗ 2.332 4.137∗∗∗
(0.321) (1.315) (1.193) (1.694) (1.446)

Female 0.467 −2.217 −2.756∗∗ 0.808 0.474
(0.499) (1.360) (1.246) (1.301) (0.820)

Partner 0.651 0.440 1.226 −1.909 −0.357
(0.477) (0.867) (0.757) (1.421) (0.720)

Age 39.001 −0.008 0.036 −0.216∗∗∗ −0.159∗∗∗
(9.155) (0.049) (0.041) (0.068) (0.045)

White 0.877 −0.113 −0.340 −0.415 −1.624
(0.329) (1.539) (1.459) (1.659) (1.360)

Black 0.067 0.516 −0.933 8.640∗∗ 2.222
(0.251) (2.258) (2.001) (4.227) (1.685)

Hispanic 0.031 −3.080 −4.672∗∗ 4.296 −0.529
(0.174) (2.475) (2.088) (6.392) (2.182)

High school diploma 0.164 −0.746 −0.813 −3.205 0.149
(0.371) (2.400) (2.306) (4.290) (1.428)

Att. college w/o graduating 0.431 0.859 0.871 −2.028 0.619
(0.495) (2.344) (2.255) (4.202) (1.355)

College graduate 0.365 5.139∗∗ 5.309∗∗ −2.649 −1.326
(0.482) (2.598) (2.449) (4.172) (1.534)

Constant 7.454∗∗ 6.117∗∗ 13.626∗∗∗ 7.019∗∗∗
(3.183) (3.046) (4.972) (2.277)

R2 0.775 0.804 0.146 0.421
N 1249 1249 1249 1249

NOTE: Standard errors are in parentheses (Eicker–White used in OLS estimation). * Significant at 10% level. ** Significant at 5% level. *** Significant at 1% level.

3.1 Monte Carlo Analysis

We conducted a Monte Carlo analysis to assess how censor-
ing and possible rounding in the SEE income data can affect
the results in our application. Our analysis focuses on compar-
ing the performance of our proposed flexible approach with the
performance of the parametric approach, using both correctly
specified and misspecified distribution functions for the para-
metric approach. We begin by specifying the data-generating
process of medians medi and interquartile ranges IQRi

medi = θ0 + θ1x1i + εi, (3)

IQRi = γ0 + γ1x2i + ηi, (4)

where x1i and x2i are two determinants, and where εi and
ηi denote homoscedastic unobserved heterogeneity. Our ob-
jective is to analyze the properties of the OLS estimator of
(θ0, θ1, γ0, γ1)

′ in the presence of censoring and rounding. To
proceed, we specify (3) and (4) as equations generating quan-
tiles of a Kumaraswamy distribution defined over the [0,1] in-
terval with parameters (αi ≥ 0, βi ≥ 0). The Kumaraswamy dis-
tribution is sufficiently flexible to accommodate a wide range

of symmetric and asymmetric distributions of potential out-
comes (Kumaraswamy 1980). For example, (αi = 2, βi = 2)

implies a symmetric distribution centered at 0.5, whereas (αi =
1, βi = 5) produces a severely left-skewed distribution with
mode at 0.2. We specify our data-generating process in the
following way. First, values of x1i and x2i are drawn from a
uniform distribution on the [−0.5,0.5] interval, whereas val-
ues of εi and ηi are each drawn from a standard normal distri-
bution with mean 0 truncated to the [−0.1,0.1] interval. Fi-
nally, we set (θ0 = 0.5, θ1 = 0.3, γ0 = 0.5, γ1 = 0.3). These
data-generating processes force both medi and IQRi to lie
within [0.25,0.75]. We next present in detail the steps per-
formed in our Monte Carlo simulations. Our analysis of the
flexible and parametric approaches differs only with respect to
step 4.

Step 1. Draw (medi, IQRi) for i = 1,2, . . . ,N using equa-
tions (3) and (4).

Step 2. Compute for each i the parameters (αi, βi) corre-
sponding Kumaraswamy distribution by numerically solving
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the following system of equations:

medi = Q0.5(αi, βi), (5)

IQRi = Q0.75(αi, βi) − Q0.25(αi, βi) (6)

such that Qκ(αi, βi) = F−1(κ;αi, βi) where F−1(·) denotes the
inverse mapping of the Kumaraswamy cumulative distribution
function F(x) = 1 − (1 − xαi)βi evaluated at 0 ≤ κ ≤ 1 with
parameters (αi, βi).

Step 3. Generate points {zj,i : j = 2, . . . , J −1} using a branch-
ing algorithm inspired by our empirical application. In par-
ticular, respondents with medi ≤ 0.42 are assigned the vec-
tor of thresholds (0,0.125,0.25,0.4,0.7,1), those with 0.42 <

medi < 0.59 are assigned thresholds (0,0.2,0.4,0.6,0.8,1),
and those with medi ≥ 0.59 are assigned thresholds (0,0.3,0.6,

0.75,0.875,1). As with our empirical application, this algo-
rithm assumes that prior information about the location of the
distribution is used to generate thresholds. Then the cumulative
probabilities F(zj,i;αi, βi) are computed at all zj,i values.

Step 4 (Flexible approach). Compute estimates m̂edi and
ÎQRi using the flexible approach.

Step 4 (Parametric approach). Compute the value of δ that
minimizes the following loss function:

δ̂ = arg min
δ

∑
(Pr(Z ≤ zj,i; δ) − Fi(zj,i, r))2,

where the summation is over the data points of respondent i
and Pr(Z ≤ zj,i; δ) denotes a parametric cumulative distribution
function with an unknown vector of parameters δ. We consider
the correctly specified case where Pr(Z ≤ zj,i; δ) is correctly
chosen to be the Kumaraswamy distribution with parameters
δ = [αi, βi]. We also consider a misspecified case where Pr(Y ≤
zj,i; δ) is chosen to be the Normal distribution with mean τi and
variance γ 2

i . We compute estimates m̂edi and ÎQRi using δ̂.
Step 5. Estimate the following equations:

m̂edi = θ0 + θ1xi + εi, (7)

ÎQRi = γ0 + γ1xi + ηi, (8)

where εi = εi + m̂edi − medi and ηi = ηi + ÎQRi − IQRi. Equa-
tions (7) and (8) are identical to equations (3) and (4), except
that the true medians and IQRs are replaced by approximated

values generated using either the parametric approach or the
flexible approach. Estimated values (θ̂0, θ̂1)

′ and (γ̂0, γ̂1)
′ are

saved. We repeat steps 1–5 to for 10,000 samples of size 100.
The foregoing five steps generate our baseline results with-

out censoring or rounding. To analyze the effects of rounding,
we replace the probabilities F(zj;αi, βi) in step 3 by the closest
of the following numbers: 0, 1, 2, 3, 5, 10, 15, 20, 25, 30, 35,
40, 50, 60, 65, 70, 75, 80, 85, 90, 95, 97, 98, 99, or 100. This
sequence closely matches the probability responses in our ap-
plication. It also is one of the main rounding patterns discussed
in the literature (see Manski and Molinari 2010).

To analyze the effects of censoring, we randomly draw for
each i a pair of censoring levels from below and from above
using the empirical distribution of censoring levels presented
in Figure 2. Let c0

i and c1
i denote these censoring levels. We

then rescale the thresholds assigned in step 3 such that z1,i =
Qc0

i
(αi, βi) and zJ,i = Q1−c1

i
(αi, βi).

We evaluate the performance of the flexible and parametric
approaches with rounding and censoring by computing param-
eter and standard error biases. Parameter bias is computed us-
ing ( 1

S

∑S
s=1 φ̂s − φ)/φ, where φ ∈ {θ0, θ1, γ0, γ1} are the true

values and φ̂s denotes the estimated parameter in simulation
s ≤ S = 10,000. We also compute the percent bias of the esti-
mated standard errors using ( 1

S

∑S
s=1 se(φ̂s) − sd(φ̂s))/ sd(φ̂s),

where sd(φ̂s) denotes the standard deviation of all φ̂s and se(φ̂s)

denotes the standard error predicted using the covariance ma-
trix of the OLS estimator with homoscedasticity (σ 2(X′X)−1).
Thus we report the percent difference between the average stan-
dard error predicted by the OLS estimator and the actual stan-
dard deviation of the estimates over the 10,000 simulations.

Table 2 presents the results. We see that under the baseline
scenario (no censoring or rounding), both parameter and stan-
dard error biases are small and negligible for the flexible and
correctly specified parametric approaches. Of note, these re-
sults also hold when censoring and rounding levels believed
to be present in our data are incorporated in the analysis. This
suggests that results of our empirical application are robust
to censoring and possible rounding in the data. We also find
that our flexible approach clearly outperforms the misspeci-
fied parametric approach based on the erroneous assumption

Table 2. Lines (θ̂0, θ̂1, γ̂0, γ̂1) present the corresponding parameter biases computed using ( 1
S

∑S
s=1 φ̂s − φ)/φ, where φ ∈ {γ0, γ1, θ0, θ1} are

the true values and φ̂s denotes the estimated parameter in simulation s ≤ S = 10,000. Lines std(·) present the percent bias
of the estimated standard errors of the corresponding estimated parameter using ( 1

S
∑S

s=1 se(φ̂s) − sd(φ̂s))/ sd(φ̂s),
where sd(φ̂s) denotes the standard deviation of all φ̂s, and where se(φ̂s) denotes the standard error predicted

using the covariance matrix of the OLS estimator with homoscedasticity (σ 2(X′X)−1)

Flexible Correct parametric Misspecified parametric

Baseline Rounding Censoring Baseline Rounding Censoring Baseline Rounding Censoring

θ̂0 0.000 −0.000 −0.000 0.000 0.000 −0.000 −0.001 −0.001 −0.002
θ̂1 −0.008 −0.002 −0.007 0.001 0.001 −0.001 −0.241 −0.240 −0.223
γ̂0 −0.010 −0.013 −0.008 0.000 −0.002 −0.000 −0.171 −0.173 −0.146
γ̂1 −0.011 −0.016 −0.018 −0.000 0.001 −0.000 −0.430 −0.431 −0.367

std(θ̂0) −0.002 0.007 −0.011 −0.002 0.002 −0.011 −0.003 0.004 −0.013
std(θ̂1) −0.011 −0.005 −0.011 −0.015 −0.014 −0.014 −0.002 −0.003 −0.009
std(γ̂0) 0.003 −0.006 0.005 0.001 −0.007 0.004 0.002 −0.005 0.003
std(γ̂1) 0.040 0.046 0.035 −0.004 −0.002 −0.001 −0.027 −0.020 −0.030
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that distributions are normal in the population. There parame-
ter bias is substantial: −24% for θ̂1, −17% for γ̂0, and −43%
for γ̂1. These biases are not affected by censoring and round-
ing.

4. CONCLUSION AND DISCUSSION

Our Monte Carlo analysis suggests that the quantile-based
flexible approach is robust to levels of rounding discussed in
the literature and can accommodate censoring levels present in
our data. We found that the flexible approach is comparable to a
(first-best) correctly specified parametric approach in terms of
bias and efficiency. Moreover, it clearly outperforms the mis-
specified parametric approach that we consider. We interpret
these results as an indication that the flexible approach repre-
sents a potentially useful alternative to the existing parametric
approach when researchers have little prior knowledge of the
shape of the underlying distributions.

The flexible approach has three limitations. First, it lacks
a distribution theory which would allow one to make infer-
ences on individual specific distribution functions. This limi-
tation might not pose a significant problem in practice, given
that research on subjective expectations has focused on making
statistical inferences on the determinants on expectations rather
than on individual distribution functions. A second limitation
is that moments are biased in the presence of censoring. This
is expected because the flexible approach maintains weak as-
sumptions on the shape of the distribution, thereby preventing
extrapolation outside of the support spanned by the probabil-
ity questions. Finally, our quantile-based flexible approach can
accommodate only moderate levels of censoring.

Greater levels of censoring can be dealt with in several ways.
The first and simplest way is to drop observations with exces-
sive censoring. Though simple, this approach may introduce
selection biases if the observations dropped represent a non-
random subset of observations. A second way is to revert back
to the parametric approach and maintain stronger distributional
assumptions. Although this would allow accounting for censor-
ing in the data, adopting a fully parametric approach introduces
possible specification biases. Our analysis suggests that such

biases can be sizeable. Finally, the survey design could be im-
proved by designing probability questions to gather informa-
tion on a larger range of possible outcomes. The flexible ap-
proach could then be used to make inferences while maintain-
ing weaker assumptions on the underlying distributions.
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